Reconfigurable radar transmitter based on photonic microwave signal generation

Abstract

In this paper we propose a photonic technique for a reconfigurable microwave signal generation based on the beating in a photodiode of two laser modes from a regenerative Fiber Mode-Locked Laser (FMLL). The excellent performance of this kind of pulsed laser guarantees high stability to the generated microwave signal even at ultra high frequencies (up to W band). Therefore, by using the proposed architecture, the performance of a reconfigurable full digital coherent radar system can be enhanced in terms of Moving Target Indicator (MTI) improvement factor. Moreover, thanks to the achievable high repetition rates and the coherence properties of the FMLL, this laser scheme has also been proposed for digitizing the received signal by electro-optical sampling. Thus the advantage of using just one device for signal generation in both the transmitter and receiver chain, makes the proposed solution a cost effective architecture for microwave signal generation. Differently from the microwave synthesizers, whose performance strongly deteriorate with increasing frequencies, the photonic radio frequency generation always shows an excellent spectral purity. The results show excellent spectral purity above 5 KHz for the proposed technique compared to a state of the art Agilent synthesizer even though the timing jitter increases for integration time greater than 10 msec. In order to achieve the same stability performance at both high and low frequencies a Phase Locked Loop between the laser and a synthesizer could be used

    Similar works