CAPTCHAs have become a standard security mechanism that are used to deter automated abuse of online services intended for humans. However, many existing CAPTCHA schemes to date have been successfully broken. As such, a number of CAPTCHA developers have explored alternative methods of designing CAPTCHAs. 3D CAPTCHAs is a design alternative that has been proposed to overcome the limitations of traditional CAPTCHAs. These CAPTCHAs are designed to capitalize on the human visual system\u27s natural ability to perceive 3D objects from an image. The underlying security assumption is that it is difficult for a computer program to identify the 3D content. This paper investigates the robustness of text-based 3D CAPTCHAs. In particular, we examine three existing text-based 3D CAPTCHA schemes that are currently deployed on a number of websites. While the direct use of Optical Character Recognition (OCR) software is unable to correctly solve these textbased 3D CAPTCHA challenges, we highlight certain patterns in the 3D CAPTCHAs can be exploited to identify important information within the CAPTCHA. By extracting this information, this paper demonstrates that automated attacks can be used to solve these 3D CAPTCHAs with a high degree of success