research

Indirect measurement of sin2θW\sin^2 \theta_W (or MWM_W) using μ+μ\mu^+\mu^- pairs from γ/Z\gamma^*/Z bosons produced in ppˉp\bar{p} collisions at a center-of-momentum energy of 1.96 TeV

Abstract

Drell-Yan lepton pairs are produced in the process ppˉμ+μ+Xp\bar{p} \rightarrow \mu^+\mu^- + X through an intermediate γ/Z\gamma^*/Z boson. The forward-backward asymmetry in the polar-angle distribution of the μ\mu^- as a function of the invariant mass of the μ+μ\mu^+\mu^- pair is used to obtain the effective leptonic determination sin2θefflept\sin^2 \theta^{lept}_{eff} of the electroweak-mixing parameter sin2θW\sin^2 \theta_W, from which the value of sin2θW\sin^2 \theta_W is derived assuming the standard model. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.2 fb-1 of integrated luminosity from ppˉp\bar{p} collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of sin2θefflept\sin^2 \theta^{lept}_{eff} is found to be 0.2315 +- 0.0010, where statistical and systematic uncertainties are combined in quadrature. When interpreted within the context of the standard model using the on-shell renormalization scheme, where sin2θW=1MW2/MZ2\sin^2 \theta_W = 1 - M_W^2/M_Z^2, the measurement yields sin2θW\sin^2 \theta_W = 0.2233 +- 0.0009, or equivalently a W-boson mass of 80.365 +- 0.047 GeV/c^2. The value of the W-boson mass is in agreement with previous determinations in electron-positron collisions and at the Tevatron collider

    Similar works