We study contextual linear bandit problems under uncertainty on features;
they are noisy with missing entries. To address the challenges from the noise,
we analyze Bayesian oracles given observed noisy features. Our Bayesian
analysis finds that the optimal hypothesis can be far from the underlying
realizability function, depending on noise characteristics, which is highly
non-intuitive and does not occur for classical noiseless setups. This implies
that classical approaches cannot guarantee a non-trivial regret bound. We thus
propose an algorithm aiming at the Bayesian oracle from observed information
under this model, achieving O~(dT) regret bound with respect to
feature dimension d and time horizon T. We demonstrate the proposed
algorithm using synthetic and real-world datasets.Comment: 30 page