A model for the growth of mathematical specialties

Abstract

A mathematical model for the growth of two coupled mathematical specialties, differential geometry and topology, is analyzed. The key variable is the number of theorems in use in each specialty. Obsolescences of theorems-in-use due to replacement by more general theorems introduces non-linear terms of the differential equations. The stability of stationary solutions is investigated. The phase portrait shows that the number of theorems in low-dimensional topology relative to those in differential geometry is increasing. The model is qualitatively consistent with the growth of publications in these two specialties, but does not give quantitative predictions, partly because we do not use an explicit solutions as a function of time and partly because only two specialties are used. The methods of analysis and some of the concepts can be extended to the development of more general and realistic models for the growth of specialties.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43670/1/11192_2005_Article_BF02021121.pd

    Similar works

    Full text

    thumbnail-image