Noninvasive Submillimeter-Precision Brain Stimulation by Optically-Driven Focused Ultrasound

Abstract

High precision neuromodulation is a powerful tool to decipher neurocircuits and treat neurological diseases. Current non-invasive neuromodulation methods offer limited millimeter-level precision. Here, we report an optically-driven focused ultrasound (OFUS) for non-invasive brain stimulation with submillimeter precision. OFUS is generated by a soft optoacoustic pad (SOAP) fabricated through embedding candle soot nanoparticles in a curved polydimethylsiloxane film. SOAP generates a transcranial ultrasound focus at 15 MHz with a lateral resolution of 83 micrometers, which is two orders of magnitude smaller than that of conventional transcranial focused ultrasound (tFUS). Effective OFUS neurostimulation in vitro with a single ultrasound cycle is shown. Submillimeter transcranial stimulation of mouse motor cortex in vivo is demonstrated. An acoustic energy of 0.02 J/cm^2, two orders of magnitude less than that of tFUS, is sufficient for successful OFUS neurostimulation. By delivering a submillimeter focus non-invasively, OFUS opens a new way for neuroscience studies and disease treatments.Comment: 36 pages, 5 main figures, 13 supplementary figure

    Similar works

    Full text

    thumbnail-image

    Available Versions