In this paper we present the high-level functionalities of a
quantum-classical machine learning software, whose purpose is to learn the main
features (the fingerprint) of quantum noise sources affecting a quantum device,
as a quantum computer. Specifically, the software architecture is designed to
classify successfully (more than 99% of accuracy) the noise fingerprints in
different quantum devices with similar technical specifications, or distinct
time-dependences of a noise fingerprint in single quantum machines.Comment: 9 pages, 2 figure