Lp-solution to the random linear delay differential equation with stochastic forcing term

Abstract

[EN] This paper aims at extending a previous contribution dealing with the random autonomous-homogeneous linear differential equation with discrete delay tau > 0, by adding a random forcing term f(t) that varies with time: x'(t) = ax(t) + bx(t-tau) + f(t), t >= 0, with initial condition x(t) = g(t), -tau <= t <= 0. The coefficients a and b are assumed to be random variables, while the forcing term f(t) and the initial condition g(t) are stochastic processes on their respective time domains. The equation is regarded in the Lebesgue space L-p of random variables with finite p-th moment. The deterministic solution constructed with the method of steps and the method of variation of constants, which involves the delayed exponential function, is proved to be an L-p-solution, under certain assumptions on the random data. This proof requires the extension of the deterministic Leibniz's integral rule for differentiation to the random scenario. Finally, we also prove that, when the delay tau tends to 0, the random delay equation tends in L-p to a random equation with no delay. Numerical experiments illustrate how our methodology permits determining the main statistics of the solution process, thereby allowing for uncertainty quantification.This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P.Cortés, J.; Jornet, M. (2020). Lp-solution to the random linear delay differential equation with stochastic forcing term. Mathematics. 8(6):1-16. https://doi.org/10.3390/math8061013S11686Xiu, D., & Karniadakis, G. E. (2004). Supersensitivity due to uncertain boundary conditions. International Journal for Numerical Methods in Engineering, 61(12), 2114-2138. doi:10.1002/nme.1152Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2016). A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 32, 199-210. doi:10.1016/j.cnsns.2015.08.009Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Cortés, J.-C., Jódar, L., Roselló, M.-D., & Villafuerte, L. (2012). Solving initial and two-point boundary value linear random differential equations: A mean square approach. Applied Mathematics and Computation, 219(4), 2204-2211. doi:10.1016/j.amc.2012.08.066Calatayud, J., Cortés, J.-C., Jornet, M., & Villafuerte, L. (2018). Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1848-8Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation. Mediterranean Journal of Mathematics, 16(3). doi:10.1007/s00009-019-1338-6Licea, J. A., Villafuerte, L., & Chen-Charpentier, B. M. (2013). Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 239, 208-219. doi:10.1016/j.cam.2012.09.040Burgos, C., Calatayud, J., Cortés, J.-C., & Villafuerte, L. (2018). Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series. Applied Mathematics Letters, 78, 95-104. doi:10.1016/j.aml.2017.11.009Nouri, K., & Ranjbar, H. (2014). Mean Square Convergence of the Numerical Solution of Random Differential Equations. Mediterranean Journal of Mathematics, 12(3), 1123-1140. doi:10.1007/s00009-014-0452-8Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Random differential equations with discrete delay. Stochastic Analysis and Applications, 37(5), 699-707. doi:10.1080/07362994.2019.1608833Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Lp\mathrm {L}^p-calculus Approach to the Random Autonomous Linear Differential Equation with Discrete Delay. Mediterranean Journal of Mathematics, 16(4). doi:10.1007/s00009-019-1370-6Caraballo, T., Cortés, J.-C., & Navarro-Quiles, A. (2019). Applying the random variable transformation method to solve a class of random linear differential equation with discrete delay. Applied Mathematics and Computation, 356, 198-218. doi:10.1016/j.amc.2019.03.048Zhou, T. (2014). A Stochastic Collocation Method for Delay Differential Equations with Random Input. Advances in Applied Mathematics and Mechanics, 6(4), 403-418. doi:10.4208/aamm.2012.m38Shi, W., & Zhang, C. (2017). Generalized polynomial chaos for nonlinear random delay differential equations. Applied Numerical Mathematics, 115, 16-31. doi:10.1016/j.apnum.2016.12.004Khusainov, D. Y., Ivanov, A. F., & Kovarzh, I. V. (2009). Solution of one heat equation with delay. Nonlinear Oscillations, 12(2), 260-282. doi:10.1007/s11072-009-0075-3Shaikhet, L. (2016). Stability of equilibrium states of a nonlinear delay differential equation with stochastic perturbations. International Journal of Robust and Nonlinear Control, 27(6), 915-924. doi:10.1002/rnc.3605Benhadri, M., & Zeghdoudi, H. (2018). Mean square asymptotic stability in nonlinear stochastic neutral Volterra-Levin equations with Poisson jumps and variable delays. Functiones et Approximatio Commentarii Mathematici, 58(2). doi:10.7169/facm/1657Santonja, F.-J., & Shaikhet, L. (2012). Analysing Social Epidemics by Delayed Stochastic Models. Discrete Dynamics in Nature and Society, 2012, 1-13. doi:10.1155/2012/530472Liu, L., & Caraballo, T. (2018). Analysis of a Stochastic 2D-Navier–Stokes Model with Infinite Delay. Journal of Dynamics and Differential Equations, 31(4), 2249-2274. doi:10.1007/s10884-018-9703-xLupulescu, V., & Abbas, U. (2011). Fuzzy delay differential equations. Fuzzy Optimization and Decision Making, 11(1), 99-111. doi:10.1007/s10700-011-9112-7Krapivsky, P. L., Luck, J. M., & Mallick, K. (2011). On stochastic differential equations with random delay. Journal of Statistical Mechanics: Theory and Experiment, 2011(10), P10008. doi:10.1088/1742-5468/2011/10/p10008GARRIDO-ATIENZA, M. J., OGROWSKY, A., & SCHMALFUSS, B. (2011). RANDOM DIFFERENTIAL EQUATIONS WITH RANDOM DELAYS. Stochastics and Dynamics, 11(02n03), 369-388. doi:10.1142/s0219493711003358Cortés, J.-C., Villafuerte, L., & Burgos, C. (2017). A Mean Square Chain Rule and its Application in Solving the Random Chebyshev Differential Equation. Mediterranean Journal of Mathematics, 14(1). doi:10.1007/s00009-017-0853-6Cortés, J. C., Jódar, L., & Villafuerte, L. (2007). Numerical solution of random differential equations: A mean square approach. Mathematical and Computer Modelling, 45(7-8), 757-765. doi:10.1016/j.mcm.2006.07.017Braumann, C. A., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2018). On the random gamma function: Theory and computing. Journal of Computational and Applied Mathematics, 335, 142-155. doi:10.1016/j.cam.2017.11.045Khusainov, D. Y., & Pokojovy, M. (2015). Solving the Linear 1D Thermoelasticity Equations with Pure Delay. International Journal of Mathematics and Mathematical Sciences, 2015, 1-11. doi:10.1155/2015/47926

    Similar works