We describe the one-dimensional Čebyšëv subspaces of a JBW ∗ -triple M by showing that for a non-zero element x in M, Cx is a Čebyšëv subspace of M if and only if x is a Brown-Pedersen quasi-invertible element in M. We study the Čebyšëv JBW ∗ -subtriples of a JBW ∗ -triple M. We prove that for each non-zero Čebyšëv JBW ∗ -subtriple N of M, exactly one of the following statements holds:
(a) N is a rank-one JBW ∗ -triple with dim(N)≥2 (i.e., a complex Hilbert space regarded as a type 1 Cartan factor). Moreover, N may be a closed subspace of arbitrary dimension and M may have arbitrary rank;
(b) N=Ce, where e is a complete tripotent in M;
(c) N and M have rank two, but N may have arbitrary dimension ≥2;
(d) N has rank greater than or equal to three, and N=M.
We also provide new examples of Čebyšëv subspaces of classic Banach spaces in connection with ternary rings of operators.The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group No. RG-1435-020. The second author also is partially supported by the Spanish Ministry of Economy and Competitiveness project No. MTM2014-58984-P