[EN] In this paper, we deal with uncertainty quantification for the random Legendre differential equation, with input coefficient A and initial conditions X-0 and X-1. In a previous study (Calbo et al. in Comput Math Appl 61(9):2782-2792, 2011), a mean square convergent power series solution on (-1/e, 1/e) was constructed, under the assumptions of mean fourth integrability of X-0 and X-1, independence, and at most exponential growth of the absolute moments of A. In this paper, we relax these conditions to construct an L-p solution (1 <= p <= infinity) to the random Legendre differential equation on the whole domain (-1, 1), as in its deterministic counterpart. Our hypotheses assume no independence and less integrability of X-0 and X-1. Moreover, the growth condition on the moments of A is characterized by the boundedness of A, which simplifies the proofs significantly. We also provide approximations of the expectation and variance of the response process. The numerical experiments show the wide applicability of our findings. A comparison with Monte Carlo simulations and gPC expansions is performed.This work has been supported by the Spanish Ministerio de Economia y Competitividad Grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia.Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Improving the approximation of the first and second order statistics of the response stochastic process to the random Legendre differential equation. Mediterranean Journal of Mathematics. 16(3):1-14. https://doi.org/10.1007/s00009-019-1338-6S114163Soong, T.T.: Random Differential Equations in Science and Engineering. Academic Press, New York (1973)Strand, J.L.: Random ordinary differential equations. J. Differ. Equ. 7(3), 538–553 (1970)Smith, R.C.: Uncertainty quantification. Theory, implementation, and application. SIAM Comput. Sci. Eng. New York (2013) ISBN 9781611973211Fishman, G.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, Berlin (2013)Cortés, J.-C., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., Villanueva, R.-J.: Solving continuous models with dependent uncertainty: a computational approach. Abstr. Appl. Anal. 2013, 983839 (2013). https://doi.org/10.1155/2013/983839Xiu, D.: Numerical Methods for Stochastic Computations. A Spectral Method Approach. Cambridge Texts in Applied Mathematics. Princeton University Press, New York (2010)El-Tawil, M.A.: The approximate solutions of some stochastic differential equations using transformations. Appl. Math. Comput. 164(1), 167–178 (2005)Cortés, J.-C., Sevilla-Peris, P., Jódar, L.: Constructing approximate diffusion processes with uncertain data. Math. Comput. Simul. 73(1–4), 125–132 (2006)Cortés, J.-C., Jódar, L., Villafuerte, L., Villanueva, R.-J.: Computing mean square approximations of random diffusion models with source term. Math. Comput. Simul. 76(1–3), 44–48 (2007)Khodabin, M., Maleknejad, K., Rostami, M., Nouri, M.: Numerical solution of stochastic differential equations by second order Runge–Kutta methods. Math. Comput. Model. 53(9–10), 1910–1920 (2011)Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterran. J. Math. 12(3), 1123–1140 (2015)Nouri, N.: Study on stochastic differential equations via modified Adomian decomposition method. U.P.B. Sci. Bull. Ser. A 78(1), 81–90 (2016)Khodabin, M., Rostami, M.: Mean square numerical solution of stochastic differential equations by fourth order Runge–Kutta method and its application in the electric circuits with noise. Adv. Differ. Equ. 623, 1–19 (2015)Díaz-Infante, S., Jerez, S.: Convergence and asymptotic stability of the explicit Steklov method for stochastic differential equations. J. Comput. Appl. Math. 291(1), 36–47 (2016)Soheili, Ali R, Toutounian, F., Soleymani, F.: A fast convergent numerical method for matrix sign function with application in SDEs (Stochastic Differential Equations). J. Comput. Appl. Math. 282, 167–178 (2015)Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (2003)Villafuerte, L., Braumann, C.A., Cortés, J.-C., Jódar, L.: Random differential operational calculus: theory and applications. Comput. Math. Appl. 59(1), 115–125 (2010)Licea, J., Villafuerte, L., Chen-Charpentier, B.M.: Analytic and numerical solutions of a Riccati differential equation with random coefficients. J. Comput. Appl. Math. 309(1), 208–219 (2013)Cortés, J.-C., Jódar, L., Camacho, J., Villafuerte, L.: Random Airy type differential equations: mean square exact and numerical solutions. Comput. Math. Appl. 60(5), 1237–1244 (2010)Calbo, G., Cortés, J.-C., Jódar, L.: Random Hermite differential equations: mean square power series solutions and statistical properties. Appl. Math. Comput. 218(7), 3654–3666 (2011)Calbo, G., Cortés, J.-C., Jódar, L., Villafuerte, L.: Solving the random Legendre differential equation: mean square power series solution and its statistical functions. Comput. Math. Appl. 61(9), 2782–2792 (2011)Cortés, J.C., Jódar, L., Villafuerte, L.: Mean square solution of Bessel differential equation with uncertainties. J. Comput. Appl. Math. 309(1), 383–395 (2017)Golmankhaneh, A.K., Porghoveh, N.A., Baleanu, D.: Mean square solutions of second-order random differential equations by using homotopy analysis method. Roman. Rep. Phys. 65(2), 350–362 (2013)Khudair, A.K., Ameen, A.A., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using Adomian decomposition method. Appl. Math. Sci. 51(5), 2521–2535 (2011)Khudair, A.K., Haddad, S.A.M., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using the differential transformation method. Open J. Appl. Sci. 6, 287–297 (2016)Norman, L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 1. Wiley, Oxford (1994)Ernst, O.G., Mugler, A., Starkloff, H.-J., Ullmann, E.: On the convergence of generalized polynomial chaos expansions. ESAIM Math. Modell. Num. Anal. 46(2), 317–339 (2012)Shi, W., Zhang, C.: Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations. Appl. Num. Math. 62(12), 1954–1964 (2012)Calatayud, J., Cortés, J.-C., Jornet, M.: On the convergence of adaptive gPC for non-linear random difference equations: theoretical analysis and some practical recommendations. J. Nonlinear Sci. Appl. 11(9), 1077–1084 (2018