[EN] In this article, we study random differential equations with discrete delay with initial condition The uncertainty in the problem is reflected via the outcome omega. The initial condition g(t) is a stochastic process. The term x(t) is a stochastic process that solves the random differential equation with delay in a probabilistic sense. In our case, we use the random calculus approach. We extend the classical Picard theorem for deterministic ordinary differential equations to calculus for random differential equations with delay, via Banach fixed-point theorem. We also relate solutions with sample-path solutions. Finally, we utilize the theoretical ideas to solve the random autonomous linear differential equation with discrete delay.This work has been supported by the Spanish Ministerio de Economía y Competitividad grant MTM2017 89664 PCalatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Random differential equations with discrete delay. Stochastic Analysis and Applications. 37(5):699-707. https://doi.org/10.1080/07362994.2019.1608833S699707375Fridman, E., & Shaikhet, L. (2017). Stabilization by using artificial delays: An LMI approach. Automatica, 81, 429-437. doi:10.1016/j.automatica.2017.04.015Shaikhet, L., & Korobeinikov, A. (2015). Stability of a stochastic model for HIV-1 dynamics within a host. Applicable Analysis, 95(6), 1228-1238. doi:10.1080/00036811.2015.1058363Caraballo, T., Colucci, R., & Guerrini, L. (2018). On a predator prey model with nonlinear harvesting and distributed delay. Communications on Pure & Applied Analysis, 17(6), 2703-2727. doi:10.3934/cpaa.2018128Caraballo, T., J. Garrido-Atienza, M., Schmalfuss, B., & Valero, J. (2017). Attractors for a random evolution equation with infinite memory: Theoretical results. Discrete & Continuous Dynamical Systems - B, 22(5), 1779-1800. doi:10.3934/dcdsb.2017106Krapivsky, P. L., Luck, J. M., & Mallick, K. (2011). On stochastic differential equations with random delay. Journal of Statistical Mechanics: Theory and Experiment, 2011(10), P10008. doi:10.1088/1742-5468/2011/10/p10008Liu, S., Debbouche, A., & Wang, J. (2017). On the iterative learning control for stochastic impulsive differential equations with randomly varying trial lengths. Journal of Computational and Applied Mathematics, 312, 47-57. doi:10.1016/j.cam.2015.10.028Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009Slama, H., El-Bedwhey, N. A., El-Depsy, A., & Selim, M. M. (2017). Solution of the finite Milne problem in stochastic media with RVT Technique. The European Physical Journal Plus, 132(12). doi:10.1140/epjp/i2017-11763-6Nouri, K., Ranjbar, H., & Torkzadeh, L. (2019). Modified stochastic theta methods by ODEs solvers for stochastic differential equations. Communications in Nonlinear Science and Numerical Simulation, 68, 336-346. doi:10.1016/j.cnsns.2018.08.013Lupulescu, V., O’Regan, D., & ur Rahman, G. (2014). Existence results for random fractional differential equations. Opuscula Mathematica, 34(4), 813. doi:10.7494/opmath.2014.34.4.813Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Granas, A., & Dugundji, J. (2003). Fixed Point Theory. Springer Monographs in Mathematics. doi:10.1007/978-0-387-21593-