Quantum computation using weak nonlinearities: robustness against decoherence


We investigate decoherence effects in the recently suggested quantum computation scheme using weak nonlinearities, strong probe coherent fields, detection and feedforward methods. It is shown that in the weak-nonlinearity-based quantum gates, decoherence in nonlinear media it can be made arbitrarily small simply by using arbitrarily strong probe fields, if photon number resolving detection is used. On the contrary, we find that homodyne detection with feedforward is not appropriate for this scheme because in this case decoherence rapidly increases as the probe field gets larger.Comment: 6 pages, 4 figures, 1 table, to be published in Phys. Rev.

    Similar works