In the paper titled "Encoding A Qubit In An Oscillator" Gottesman, Kitaev,
and Preskill [quant-ph/0008040] described a method to encode a qubit in the
continuous Hilbert space of an oscillator's position and momentum variables.
This encoding provides a natural error correction scheme that can correct
errors due to small shifts of the position or momentum wave functions (i.e.,
use of the displacement operator). We present bounds on the size of correctable
shift errors when both qubit and ancilla states may contain errors. We then use
these bounds to constrain the quality of input qubit and ancilla states.Comment: 5 pages, 8 figures, submitted to Physical Review