The group of local unitary transformations partitions the space of n-qubit
quantum states into orbits, each of which is a differentiable manifold of some
dimension. We prove that all orbits of the n-qubit quantum state space have
dimension greater than or equal to 3n/2 for n even and greater than or equal to
(3n + 1)/2 for n odd. This lower bound on orbit dimension is sharp, since
n-qubit states composed of products of singlets achieve these lowest orbit
dimensions.Comment: 19 page