We discuss the role of boundary conditions in determining the physical
content of the solutions of the Schrodinger equation. We study the
standing-wave, the ``in,'' the ``out,'' and the purely outgoing boundary
conditions. As well, we rephrase Feynman's +iϵ prescription as a
time-asymmetric, causal boundary condition, and discuss the connection of
Feynman's +iϵ prescription with the arrow of time of Quantum
Electrodynamics. A parallel of this arrow of time with that of Classical
Electrodynamics is made. We conclude that in general, the time evolution of a
closed quantum system has indeed an arrow of time built into the propagators.Comment: Contribution to the proceedings of the ICTP conference "Irreversible
Quantum Dynamics," Trieste, Italy, July 200