By use of external periodic driving sources, we demonstrate the possibility
of controlling the coherent as well as the decoherent dynamics of a two-level
atom placed in a lossy cavity.
The control of the coherent dynamics is elucidated for the phenomenon of
coherent destruction of tunneling (CDT), i.e., the coherent dynamics of a
driven two-level atom in a quantum superposition state can be brought
practically to a complete standstill. We study this phenomenon for different
initial preparations of the two-level atom. We then proceed to investigate the
decoherence originating from the interaction of the two-level atom with a lossy
cavity mode. The loss mechanism is described in terms of a microscopic model
that couples the cavity mode to a bath of harmonic field modes. A suitably
tuned external cw-laser field applied to the two-level atom slows down
considerably the decoherence of the atom. We demonstrate the suppression of
decoherence for two opposite initial preparations of the atomic state: a
quantum superposition state as well as the ground state. These findings can be
used to the effect of a proficient battling of decoherence in qubit
manipulation processes.Comment: 12 pages including 3 figures, submitted for publicatio