research

Some Remarks on Producing Hopf Algebras

Abstract

We report some observations concerning two well-known approaches to construction of quantum groups. Thus, starting from a bialgebra of inhomogeneous type and imposing quadratic, cubic or quartic commutation relations on a subset of its generators we come, in each case, to a q-deformed universal enveloping algebra of a certain simple Lie algebra. An interesting correlation between the order of initial commutation relations and the Cartan matrix of the resulting algebra is observed. Another example demonstrates that the bialgebra structure of sl_q(2) can be completely determined by requiring the q-oscillator algebra to be its covariant comodule, in analogy with Manin's approach to define SL_q(2) as a symmetry algebra of the bosonic and fermionic quantum planes.Comment: 6 pages, LATEX, no figures, Contribution to the Proceedings of the 4th Colloquium "Quantum Groups and Integrable Systems" (Prague, June 1995

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020