A general approach for calculating spectral and optical properties of
pigment-protein complexes of known atomic structure is presented. The method,
that combines molecular dynamics simulations, quantum chemistry calculations
and statistical mechanical modeling, is demonstrated by calculating the
absorption and circular dichroism spectra of the B800-B850 BChls of the LH2
antenna complex from Rs. molischianum at room temperature. The calculated
spectra are found to be in good agreement with the available experimental
results. The calculations reveal that the broadening of the B800 band is mainly
caused by the interactions with the polar protein environment, while the
broadening of the B850 band is due to the excitonic interactions. Since it
contains no fitting parameters, in principle, the proposed method can be used
to predict optical spectra of arbitrary pigment-protein complexes of known
structure.Comment: ReVTeX4, 11 pages, 9 figures, submitted to J. Chem. Phy