research

Theoretical study of the finite temperature spectroscopy in van der Waals clusters. III Solvated Chromophore as an effective diatomics

Abstract

The absorption spectroscopy of calcium-doped argon clusters is described in terms of an effective diatomics molecule Ca-(Ar_n), in the framework of semiclassical vertical transitions. We show how, upon choosing a suitable reaction coordinate, the effective finite-temperature equilibrium properties can be obtained for the ground- and excited-surfaces from the potential of mean force (PMF). An extension of the recent multiple range random-walk method is used to calculate the PMF over continuous intervals of distances. The absorption spectra calculated using this single-coordinate description are found to be in good agreement with the spectra obtained from high-statistics Monte Carlo data, in various situations. For CaAr13_{13}, we compare the performances of two different choices of the reaction coordinate. For CaAr_37, the method is seen to be accurate enough to distinguish between different low-energy structures. Finally, the idea of casting the initial many-body problem into a single degree of freedom problem is tested on the spectroscopy of calcium in bulk solid argon.Comment: 8 pages, 9 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019