A derivation of the properties of pulsed radiative imaging systems is
presented with examples drawn from conventional, synthetic aperture, and
interferometric radar. A geometric construction of the space and time
components of a radar observation yields a simple underlying structural
equivalence between many of the properties of radar, including resolution,
range ambiguity, azimuth aliasing, signal strength, speckle, layover, Doppler
shifts, obliquity and slant range resolution, finite antenna size, atmospheric
delays, and beam and pulse limited configurations. The same simple structure is
shown to account for many interferometric properties of radar - height
resolution, image decorrelation, surface velocity detection, and surface
deformation measurement. What emerges is a simple, unified description of the
complex phenomena of radar observations. The formulation comes from fundamental
physical concepts in relativistic field theory, of which the essential elements
are presented. In the terminology of physics, radar properties are projections
of hidden variables - curved worldlines from a broken symmetry in Minkowski
spacetime - onto a time-serial receiver.Comment: 24 pages, 18 figures Accepted JOSA-