research

Validation and Calibration of Models for Reaction-Diffusion Systems

Abstract

Space and time scales are not independent in diffusion. In fact, numerical simulations show that different patterns are obtained when space and time steps (Δx\Delta x and Δt\Delta t) are varied independently. On the other hand, anisotropy effects due to the symmetries of the discretization lattice prevent the quantitative calibration of models. We introduce a new class of explicit difference methods for numerical integration of diffusion and reaction-diffusion equations, where the dependence on space and time scales occurs naturally. Numerical solutions approach the exact solution of the continuous diffusion equation for finite Δx\Delta x and Δt\Delta t, if the parameter γN=DΔt/(Δx)2\gamma_N=D \Delta t/(\Delta x)^2 assumes a fixed constant value, where NN is an odd positive integer parametrizing the alghorithm. The error between the solutions of the discrete and the continuous equations goes to zero as (Δx)2(N+2)(\Delta x)^{2(N+2)} and the values of γN\gamma_N are dimension independent. With these new integration methods, anisotropy effects resulting from the finite differences are minimized, defining a standard for validation and calibration of numerical solutions of diffusion and reaction-diffusion equations. Comparison between numerical and analytical solutions of reaction-diffusion equations give global discretization errors of the order of 10610^{-6} in the sup norm. Circular patterns of travelling waves have a maximum relative random deviation from the spherical symmetry of the order of 0.2%, and the standard deviation of the fluctuations around the mean circular wave front is of the order of 10310^{-3}.Comment: 33 pages, 8 figures, to appear in Int. J. Bifurcation and Chao

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020