Spin-Polarization Response Functions in High-Energy (e,e'p) Reactions


Spin-polarization response functions are examined for high-energy (e,ep)(\vec{e},e'\vec{p}) reaction by computing the full 18 response functions for the proton kinetic energy Tp=T_{p'}= 0.515 GeV and 3.179 GeV with an 16O target. The Dirac eikonal formalism is applied to account for the final-state interactions. The formalism is found to yield the response functions in good agreement with those calculated by the partial-wave expansion method at 0.515 GeV. We identify the response functions that depend on the spin-orbital potential in the final-state interactions, but not on the central potential. Dependence on the Dirac- or Pauli-type current of the nucleon is investigated in the helicity-dependent response functions, and the normal-component polarization of the knocked-out proton, PnP_n, is computed.Comment: 22 pages, Latex, figures available at

    Similar works