Hartree-Fock-Bogoliubov Calculations in Coordinate Space: Neutron-Rich Sulfur, Zirconium, Cerium, and Samarium Isotopes


Using the Hartree-Fock-Bogoliubov (HFB) mean field theory in coordinate space, we investigate ground state properties of the sulfur isotopes from the line of stability up to the two-neutron dripline (3452S^{34-52}S). In particular, we calculate two-neutron separation energies, quadrupole moments, and rms-radii for protons and neutrons. Evidence for shape coexistence is found in the very neutron-rich sulfur isotopes. We compare our calculations with results from relativistic mean field theory and with available experimental data. We also study the properties of neutron-rich zirconium (102,104Zr^{102,104}Zr), cerium (152Ce^{152}Ce), and samarium (158,160Sm^{158,160}Sm) isotopes which exhibit very large prolate quadrupole deformations.Comment: 7 pages, 6 figures, 2 tables submitted to Phys. Rev.

    Similar works

    Full text


    Available Versions

    Last time updated on 03/01/2020