We study bifurcations of a three-dimensional diffeomorphism, g0​, that has
a quadratic homoclinic tangency to a saddle-focus fixed point with multipliers
(\lambda e^{i\vphi}, \lambda e^{-i\vphi}, \gamma), where
0<λ<1<∣γ∣ and ∣λ2γ∣=1. We show that in a
three-parameter family, g_{\eps}, of diffeomorphisms close to g0​, there
exist infinitely many open regions near \eps =0 where the corresponding
normal form of the first return map to a neighborhood of a homoclinic point is
a three-dimensional H\'enon-like map. This map possesses, in some parameter
regions, a "wild-hyperbolic" Lorenz-type strange attractor. Thus, we show that
this homoclinic bifurcation leads to a strange attractor. We also discuss the
place that these three-dimensional H\'enon maps occupy in the class of
quadratic volume-preserving diffeomorphisms.Comment: laTeX, 25 pages, 6 eps figure