research

Chaotic dynamics of three-dimensional H\'enon maps that originate from a homoclinic bifurcation

Abstract

We study bifurcations of a three-dimensional diffeomorphism, g0g_0, that has a quadratic homoclinic tangency to a saddle-focus fixed point with multipliers (\lambda e^{i\vphi}, \lambda e^{-i\vphi}, \gamma), where 0<λ<1<∣γ∣0<\lambda<1<|\gamma| and ∣λ2γ∣=1|\lambda^2\gamma|=1. We show that in a three-parameter family, g_{\eps}, of diffeomorphisms close to g0g_0, there exist infinitely many open regions near \eps =0 where the corresponding normal form of the first return map to a neighborhood of a homoclinic point is a three-dimensional H\'enon-like map. This map possesses, in some parameter regions, a "wild-hyperbolic" Lorenz-type strange attractor. Thus, we show that this homoclinic bifurcation leads to a strange attractor. We also discuss the place that these three-dimensional H\'enon maps occupy in the class of quadratic volume-preserving diffeomorphisms.Comment: laTeX, 25 pages, 6 eps figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020