A logarithmic scaling for structure functions, in the form Sp∼[ln(r/η)]ζp, where η is the Kolmogorov dissipation scale and
ζp are the scaling exponents, is suggested for the statistical
description of the near-dissipation range for which classical power-law scaling
does not apply. From experimental data at moderate Reynolds numbers, it is
shown that the logarithmic scaling, deduced from general considerations for the
near-dissipation range, covers almost the entire range of scales (about two
decades) of structure functions, for both velocity and passive scalar fields.
This new scaling requires two empirical constants, just as the classical
scaling does, and can be considered the basis for extended self-similarity