Spatially extended chaotic systems with power-law decaying interactions are
considered. Two coupled replicas of such systems synchronize to a common
spatio-temporal chaotic state above a certain coupling strength. The
synchronization transition is studied as a nonequilibrium phase transition and
its critical properties are analyzed at varying the interaction range. The
transition is found to be always continuous, while the critical indexes vary
with continuity with the power law exponent characterizing the interaction.
Strong numerical evidences indicate that the transition belongs to the {\it
anomalous directed percolation} family of universality classes found for
L{\'e}vy-flight spreading of epidemic processes.Comment: 4 revTeX4.0 pages, 3 color figs;added references and minor
changes;Revised version accepted for pubblication on PR