Drastic facilitation of the onset of global chaos in a periodically
driven Hamiltonian system due to an extremum in the dependence of
eigenfrequency on energy
The Chirikov resonance-overlap criterion predicts the onset of global chaos
if nonlinear resonances overlap in energy, which is conventionally assumed to
require a non-small magnitude of perturbation. We show that, for a
time-periodic perturbation, the onset of global chaos may occur at unusually
{\it small} magnitudes of perturbation if the unperturbed system possesses more
than one separatrix. The relevant scenario is the combination of the overlap in
the phase space between resonances of the same order and their overlap in
energy with chaotic layers associated with separatrices of the unperturbed
system. One of the most important manifestations of this effect is a drastic
increase of the energy range involved into the unbounded chaotic transport in
spatially periodic system driven by a rather {\it weak} time-periodic force,
provided the driving frequency approaches the extremal eigenfrequency or its
harmonics. We develop the asymptotic theory and verify it in simulations.Comment: 5 pages, 4 figures, LaTeX, to appear PR