Periodic orbits contribution to the 2-point correlation form factor for pseudo-integrable systems


The 2-point correlation form factor, K2(τ)K_2(\tau), for small values of τ\tau is computed analytically for typical examples of pseudo-integrable systems. This is done by explicit calculation of periodic orbit contributions in the diagonal approximation. The following cases are considered: (i) plane billiards in the form of right triangles with one angle π/n\pi/n and (ii) rectangular billiards with the Aharonov-Bohm flux line. In the first model, using the properties of the Veech structure, it is shown that K2(0)=(n+ϵ(n))/(3(n2))K_2(0)=(n+\epsilon(n))/(3(n-2)) where ϵ(n)=0\epsilon(n)=0 for odd nn, ϵ(n)=2\epsilon(n)=2 for even nn not divisible by 3, and ϵ(n)=6\epsilon(n)=6 for even nn divisible by 3. For completeness we also recall informally the main features of the Veech construction. In the second model the answer depends on arithmetical properties of ratios of flux line coordinates to the corresponding sides of the rectangle. When these ratios are non-commensurable irrational numbers, K2(0)=13αˉ+4αˉ2K_2(0)=1-3\bar{\alpha}+4\bar{\alpha}^2 where αˉ\bar{\alpha} is the fractional part of the flux through the rectangle when 0αˉ1/20\le \bar{\alpha}\le 1/2 and it is symmetric with respect to the line αˉ=1/2\bar{\alpha}=1/2 when 1/2αˉ11/2 \le \bar{\alpha}\le 1. The comparison of these results with numerical calculations of the form factor is discussed in detail. The above values of K2(0)K_2(0) differ from all known examples of spectral statistics, thus confirming analytically the peculiarities of statistical properties of the energy levels in pseudo-integrable systems.Comment: 61 pages, 13 figures. Submitted to Communications in Mathematical Physics, 200

    Similar works

    Full text


    Available Versions

    Last time updated on 01/04/2019