research

Subvarieties of generic hypersurfaces in any variety

Abstract

Let W be a projective variety of dimension n+1, L a free line bundle on W, X in H0(Ld)H^0(L^d) a hypersurface of degree d which is generic among those given by sums of monomials from LL, and let f:YXf : Y \to X be a generically finite map from a smooth m-fold Y. We suppose that f is r-filling, i.e. upon deforming X in H0(Ld)H^0(L^d), f deforms in a family such that the corresponding deformations of YrY^r dominate WrW^r. Under these hypotheses we give a lower bound for the dimension of a certain linear system on the Cartesian product YrY^r having certain vanishing order on a diagonal locus as well as on a double point locus. This yields as one application a lower bound on the dimension of the linear system |K_{Y} - (d - n + m)f^*L - f^*K_{W}| which generalizes results of Ein and Xu (and in weaker form, Voisin). As another perhaps more surprising application, we conclude a lower bound on the number of quadrics containing certain projective images of Y.Comment: We made some improvements in the introduction and definitions. In an effort to clarify the arguments we separated the 1-filling case from the r-filling case and we gave a more detailed proof of the key lemma. The article will appear in the Math. Proc. Cambridge Philos. So

    Similar works