Current reporting of results based on Markov chain Monte Carlo computations
could be improved. In particular, a measure of the accuracy of the resulting
estimates is rarely reported. Thus we have little ability to objectively assess
the quality of the reported estimates. We address this issue in that we discuss
why Monte Carlo standard errors are important, how they can be easily
calculated in Markov chain Monte Carlo and how they can be used to decide when
to stop the simulation. We compare their use to a popular alternative in the
context of two examples.Comment: Published in at http://dx.doi.org/10.1214/08-STS257 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org