In many problems of classical analysis extremal configurations appear to
exhibit complicated fractal structure. This makes it much harder to describe
extremals and to attack such problems. Many of these problems are related to
the multifractal analysis of harmonic measure.
We argue that, searching for extremals in such problems, one should work with
random fractals rather than deterministic ones. We introduce a new class of
fractals random conformal snowflakes and investigate its properties developing
tools to estimate spectra and showing that extremals can be found in this
class. As an application we significantly improve known estimates from below on
the extremal behaviour of harmonic measure, showing how to constuct a rather
simple snowflake, which has a spectrum quite close to the conjectured extremal
value