We develop direct and inverse scattering theory for Jacobi operators with
steplike quasi-periodic finite-gap background in the same isospectral class. We
derive the corresponding Gel'fand-Levitan-Marchenko equation and find minimal
scattering data which determine the perturbed operator uniquely. In addition,
we show how the transmission coefficients can be reconstructed from the
eigenvalues and one of the reflection coefficients.Comment: 14 page