research

A comparison theorem for ff-vectors of simplicial polytopes

Abstract

Let fi(P)f_i(P) denote the number of ii-dimensional faces of a convex polytope PP. Furthermore, let S(n,d)S(n,d) and C(n,d)C(n,d) denote, respectively, the stacked and the cyclic dd-dimensional polytopes on nn vertices. Our main result is that for every simplicial dd-polytope PP, if fr(S(n1,d))fr(P)fr(C(n2,d)) f_r(S(n_1,d))\le f_r(P) \le f_r(C(n_2,d)) for some integers n1,n2n_1, n_2 and rr, then fs(S(n1,d))fs(P)fs(C(n2,d)) f_s(S(n_1,d))\le f_s(P) \le f_s(C(n_2,d)) for all ss such that r<sr<s. For r=0r=0 these inequalities are the well-known lower and upper bound theorems for simplicial polytopes. The result is implied by a certain ``comparison theorem'' for ff-vectors, formulated in Section 4. Among its other consequences is a similar lower bound theorem for centrally-symmetric simplicial polytopes.Comment: 8 pages. Revised and corrected version. To appear in "Pure and Applied Mathematics Quarterly

    Similar works

    Full text

    thumbnail-image

    Available Versions