research

Categories, norms and weights

Abstract

The well-known Lawvere category R of extended real positive numbers comes with a monoidal closed structure where the tensor product is the sum. But R has another such structure, given by multiplication, which is *-autonomous. Normed sets, with a norm in R, inherit thus two symmetric monoidal closed structures, and categories enriched on one of them have a 'subadditive' or 'submultiplicative' norm, respectively. Typically, the first case occurs when the norm expresses a cost, the second with Lipschitz norms. This paper is a preparation for a sequel, devoted to 'weighted algebraic topology', an enrichment of directed algebraic topology. The structure of R, and its extension to the complex projective line, might be a first step in abstracting a notion of algebra of weights, linked with physical measures.Comment: Revised version, 16 pages. Some minor correction

    Similar works

    Full text

    thumbnail-image

    Available Versions