A k-arc in a Dearguesian projective plane whose secants meet some external
line in k-1 points is said to be hyperfocused. Hyperfocused arcs are
investigated in connection with a secret sharing scheme based on geometry due
to Simmons. In this paper it is shown that point orbits under suitable groups
of elations are hyperfocused arcs with the significant property of being
contained neither in a hyperoval, nor in a proper subplane. Also, the concept
of generalized hyperfocused arc, i.e. an arc whose secants admit a blocking set
of minimum size, is introduced: a construction method is provided, together
with the classification for size up to 10