A smart wearable device for monitoring and self-management of diabetic foot: A proof of concept study

Abstract

Background and Objective: Diabetic foot is one of the important complications of diabetes, which is occurred due to the destructive parameters in different anatomical sites of feet. Management and monitoring of these parameters are very important to decrease or prevent foot ulcers. We aimed to develop a smart wearable device to monitor these parameters to prevent diabetic foot. Methods: Following literature review and expert panel discussions, we considered pressure, temperature and humidity to develop the system. During these sessions, we also developed the system architecture and determined the required technologies. We also developed a mobile application. Finally, all sensors were evaluated for accurate monitoring of pressure, temperature and humidity. A standard protocol was used to evaluate each of these sensors. To this end, five people (four with diabetes and one healthy person) participated. They did a series of movements including walking, sitting, and standing. We considered the pressure measured by Pedar system as the gold standard. Furthermore, we changed the environment temperature and humidity during several experiments and considered the environment temperature and humidity as gold standard. We compared the measured values by sensors with these gold standards. Results: The evaluation indicated the accurate performance of pressure, humidity and temperature sensors. Sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of the system to provide alarms based on the pressure measured using Pedar were 100, 50, 92.5, 91.8, and 100 , respectively. The performance of temperature sensors in smart shoes was confirmed by slight differences compared to thermometers. Relatively equal values of humidity measured by two sensors on the left and right feet and the increased difference with the environment humidity showed the exact humidity measured using these sensors. Conclusion: This smart shoes monitors pressure, humidity, and temperature of patients� feet and sends this data to their smart phone by the Bluetooth module. Furthermore, it controls these parameters; as each of these parameters exceeds the defined threshold, alerts are given to patients for self-management. © 2020 Elsevier B.V

    Similar works

    Full text

    thumbnail-image