research

Links with no exceptional surgeries

Abstract

We show that if a knot admits a prime, twist-reduced diagram with at least 4 twist regions and at least 6 crossings per twist region, then every non-trivial Dehn filling of that knot is hyperbolike. A similar statement holds for links. We prove this using two arguments, one geometric and one combinatorial. The combinatorial argument further implies that every link with at least 2 twist regions and at least 6 crossings per twist region is hyperbolic and gives a lower bound for the genus of a link.Comment: 28 pages, 15 figures. Minor rewording and organizational changes; also added theorem giving a lower bound on the genus of these link

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019