In this paper, machine learning and artificial neural network models are
proposed for quantum noise classification in stochastic quantum dynamics. For
this purpose, we train and then validate support vector machine, multi-layer
perceptron and recurrent neural network, models with different complexity and
accuracy, to solve supervised binary classification problems. By exploiting the
quantum random walk formalism, we demonstrate the high efficacy of such tools
in classifying noisy quantum dynamics using data sets collected in a single
realisation of the quantum system evolution. In addition, we also show that for
a successful classification one just needs to measure, in a sequence of
discrete time instants, the probabilities that the analysed quantum system is
in one of the allowed positions or energy configurations, without any external
driving. Thus, neither measurements of quantum coherences nor sequences of
control pulses are required. Since in principle the training of the machine
learning models can be performed a-priori on synthetic data, our approach is
expected to find direct application in a vast number of experimental schemes
and also for the noise benchmarking of the already available noisy
intermediate-scale quantum devices.Comment: 14 pages, 3 figures, 3 table