We consider a fluid queue fed by multiple On-Off flows with heavy-tailed
(regularly varying) On periods. Under fairly mild assumptions, we prove that
the workload distribution is asymptotically equivalent to that in a reduced
system. The reduced system consists of a ``dominant'' subset of the flows, with
the original service rate subtracted by the mean rate of the other flows. We
describe how a dominant set may be determined from a simple knapsack
formulation. The dominant set consists of a ``minimally critical'' set of
On-Off flows with regularly varying On periods. In case the dominant set
contains just a single On-Off flow, the exact asymptotics for the reduced
system follow from known results. For the case of several
On-Off flows, we exploit a powerful intuitive argument to obtain the exact
asymptotics. Combined with the reduced-load equivalence, the results for the
reduced system provide a characterization of the tail of the workload
distribution for a wide range of traffic scenarios