research

A new basis for eigenmodes on the Sphere

Abstract

The usual spherical harmonics YmY_{\ell m} form a basis of the vector space V{\cal V} ^{\ell} (of dimension 2+12\ell+1) of the eigenfunctions of the Laplacian on the sphere, with eigenvalue λ= (+1)\lambda_{\ell} = -\ell ~(\ell +1). Here we show the existence of a different basis Φj\Phi ^{\ell}_j for V{\cal V} ^{\ell}, where Φj(X)(XNj)\Phi ^{\ell}_j(X) \equiv (X \cdot N_j)^{\ell}, the th\ell ^{th} power of the scalar product of the current point with a specific null vector NjN_j. We give explicitly the transformation properties between the two bases. The simplicity of calculations in the new basis allows easy manipulations of the harmonic functions. In particular, we express the transformation rules for the new basis, under any isometry of the sphere. The development of the usual harmonics YmY_{\ell m} into thee new basis (and back) allows to derive new properties for the YmY_{\ell m}. In particular, this leads to a new relation for the YmY_{\ell m}, which is a finite version of the well known integral representation formula. It provides also new development formulae for the Legendre polynomials and for the special Legendre functions.Comment: 6 pages, no figure; new version: shorter demonstrations; new references; as will appear in Journal of Physics A. Journal of Physics A, in pres

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019