We construct an endomorphism of the Khovanov invariant to prove H-thinness
and pairing phenomena of the invariants for alternating links. As a
consequence, it follows that the Khovanov invariant of an oriented nonsplit
alternating link is determined by its Jones polynomial, signature, and the
linking numbers of its components.Comment: To appear in Adv. Math.; Brief summary of Khovanov invariant
(math.QA/9908171) and previous result of the author (math.GT/0201105) adde