Nazarov and Tarasov recently generalized the notion of the rank of a
partition to skew partitions. We give several characterizations of the rank of
a skew partition and one possible characterization that remains open. One of
the characterizations involves the decomposition of a skew shape into a minimal
number of border strips, and we develop a theory of these MBSD's as well as of
the closely related minimal border strip tableaux. An application is given to
the value of a character of the symmetric group S_n indexed by a skew shape z
at a permutation whose number of cycles is the rank of z.Comment: 31 pages, 10 figure