research

Sub-principal homomorphisms in positive characteristic

Abstract

Let G be a reductive group over an algebraically closed field of characteristic p, and let u in G be a unipotent element of order p. Suppose that p is a good prime for G. We show in this paper that there is a homomorphism phi:SL_2/k --> G whose image contains u. This result was first obtained by D. Testerman (J. Algebra, 1995) using case considerations for each type of simple group (and using, in some cases, computer calculations with explicit representatives for the unipotent orbits). The proof we give is free of case considerations (except in its dependence on the Bala-Carter theorem). Our construction of phi generalizes the construction of a principal homomorphism made by J.-P. Serre in (Invent. Math. 1996); in particular, phi is obtained by reduction modulo P from a homomorphism of group schemes over a valuation ring in a number field. This permits us to show moreover that the weight spaces of a maximal torus of phi(SL_2/k) on Lie(G) are ``the same as in characteristic 0''; the existence of a phi with this property was previously obtained, again using case considerations, by Lawther and Testerman (Memoirs AMS, 1999) and has been applied in some recent work of G. Seitz (Invent. Math. 2000).Comment: 20 pages, AMS LaTeX. This version fixes some minor glitches, and includes a more detailed section 5.3. To appear in Math. Zeitschrif

    Similar works

    Full text

    thumbnail-image

    Available Versions