research

Dirac Variables and Zero Modes of Gauss Constraint in Finite-Volume Two-Dimensional QED

Abstract

The finite-volume QED1+1_{1+1} is formulated in terms of Dirac variables by an explicit solution of the Gauss constraint with possible nontrivial boundary conditions taken into account. The intrinsic nontrivial topology of the gauge group is thus revealed together with its zero-mode residual dynamics. Topologically nontrivial gauge transformations generate collective excitations of the gauge field above Coleman's ground state, that are completely decoupled from local dynamics, the latter being equivalent to a free massive scalar field theory.Comment: 13 pages, LaTe

    Similar works

    Available Versions

    Last time updated on 02/01/2020