Non-Central Potentials and Spherical Harmonics Using Supersymmetry and Shape Invariance


It is shown that the operator methods of supersymmetric quantum mechanics and the concept of shape invariance can profitably be used to derive properties of spherical harmonics in a simple way. The same operator techniques can also be applied to several problems with non-central vector and scalar potentials. As examples, we analyze the bound state spectra of an electron in a Coulomb plus an Aharonov-Bohm field and/or in the magnetic field of a Dirac monopole.Comment: Latex, 12 pages. To appear in American Journal of Physic

    Similar works