research

Properties of derivative expansion approximations to the renormalization group

Abstract

Approximation only by derivative (or more generally momentum) expansions, combined with reparametrization invariance, turns the continuous renormalization group for quantum field theory into a set of partial differential equations which at fixed points become non-linear eigenvalue equations for the anomalous scaling dimension η\eta. We review how these equations provide a powerful and robust means of discovering and approximating non-perturbative continuum limits. Gauge fields are briefly discussed. Particular emphasis is placed on the r\^ole of reparametrization invariance, and the convergence of the derivative expansion is addressed.Comment: (Minor touch ups of the lingo.) Invited talk at RG96, Dubna, Russia; 14 pages including 2 eps figures; uses LaTeX, epsf and sprocl.st

    Similar works

    Available Versions

    Last time updated on 03/01/2020