Quantitative surveys of fishes associated with artificial reefs in the northwest Gulf of Mexico were conducted over a 4-yr period (2014-2017). Artificial reefs surveyed were comprised of three types: concrete structures, rig jackets, and decommissioned ships. All reefs were surveyed using vertical long line ( VLL), fish traps, and Adaptive Resolution Imaging Sonar (ARIS 1800). Mean fish abundance did not significantly differ using VLL [1.7 ind set(-1) (SD 2.2)] among the three reef types. However, relative abundance among all fishes collected was significantly highest on rig reefs using traps [6.2 ind soak(-1) (SD 3.8)], while results from sonar surveys indicated that the mean relative fish density was highest on concrete reefs [15.3 fish frame(-1) (SD 26.8)]. Red snapper (n = 792), followed by gray triggerfish (n = 130), pigfish (n = 70), tomtate (n = 69), and hardhead catfish (n = 57) were the most numerically abundant species using VLL and traps; red snapper comprised 90.7% of total catch using VLL and 43.9% using traps. Mean Brillouin\u27s diversity (HB) was highest on ships using VLL [0.41 (SD 0.14)] and highest on rigs using traps [0.87 (SD 0.58)] compared to the lowest diversity found on concrete [VLL 0.07 (SD 0.11); traps 0.36 (SD 0.32)]. Findings from this study can be used to inform the planning of future artificial reefs and their effect on the assemblages of reef-associated fishes. Additionally, these results highlight the value of using multiple gear types to survey reef fish assemblages associated with artificial reefs