The kinematical formalism for describing spinning particles developped by the
author is based upon the idea that an elementary particle is a physical system
with no excited states. It can be annihilated by the interaction with its
antiparticle but, if not destroyed, its internal structure can never be
modified. All possible states of the particle are just kinematical
modifications of any one of them. The kinematical state space of the
variational formalism of an elementary particle is necessarily a homogeneous
space of the kinematical group of spacetime symmetries. By assuming Poincare
invariance we have already described a model of a classical spinning particle
which satisfies Dirac's equation when quantized. We have recently shown that
the spacetime symmetry group of this Dirac particle is larger than the Poincare
group. It also contains spacetime dilations and local rotations. In this work
we obtain an interaction Lagrangian for two Dirac particles, which is invariant
under this enlarged spacetime group. It describes a short- and long-range
interaction such that when averaged, to supress the spin content of the
particles, describes the instantaneous Coulomb interaction between them. As an
application, we analyse the interaction between two spinning particles, and
show that it is possible the existence of metastable bound states for two
particles of the same charge, when the spins are parallel and provided some
initial conditions are fulfilled. The possibility of formation of bound pairs
is due to the zitterbewegung spin structure of the particles because when the
spin is neglected, the bound states vanish