research

Loop Equations and the Topological Phase of Multi-Cut Matrix Models

Abstract

We study the double scaling limit of mKdV type, realized in the two-cut Hermitian matrix model. Building on the work of Periwal and Shevitz and of Nappi, we find an exact solution including all odd scaling operators, in terms of a hierarchy of flows of 2×22\times 2 matrices. We derive from it loop equations which can be expressed as Virasoro constraints on the partition function. We discover a ``pure topological" phase of the theory in which all correlation functions are determined by recursion relations. We also examine macroscopic loop amplitudes, which suggest a relation to 2D gravity coupled to dense polymers.Comment: 24p

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 18/03/2019