research

Correlation Functions of Complex Matrix Models

Abstract

For a restricted class of potentials (harmonic+Gaussian potentials), we express the resolvent integral for the correlation functions of simple traces of powers of complex matrices of size NN, in term of a determinant; this determinant is function of four kernels constructed from the orthogonal polynomials corresponding to the potential and from their Cauchy transform. The correlation functions are a sum of expressions attached to a set of fully packed oriented loops configurations; for rotational invariant systems, explicit expressions can be written for each configuration and more specifically for the Gaussian potential, we obtain the large NN expansion ('t Hooft expansion) and the so-called BMN limit.Comment: latex BMN.tex, 7 files, 6 figures, 30 pages (v2 for spelling mistake and added reference) [http://www-spht.cea.fr/articles/T05/174

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020